
Under Construction:
Knowledge Based Solutions
by Bob Swart

Bolesian, the company for
which I work (in Helmond,

The Netherlands), specialises in
Knowledge Based Solutions. This
means that we create customised
applications for our clients that
perform tasks for which a certain
amount of knowledge is required.
Usually we use special knowledge
engineering development systems
like AionDS (from Platinum), but
we also sometimes use Delphi or
C++, especially where the focus is
more on the user interface, or some
other part of the engine, and less
on the knowledge base itself.

In this month’s column I would
like to show how you can write a
very simple knowledge based ap-
plication using Delphi. Some kind
of reasoning is applied, rather than
simple mathematical functions.
Usually, this is done in the form of
IF condition THEN conclusion rules,
but other techniques can be used
as well.

Typically, Knowledge Based
Systems consist of two parts: the
knowledge base (with the IF-THEN
rules) and the inference engine
(the algorithm to reason with these
rules). Hence, the knowledge is
separated from the engine. This
also means that we can’t just imple-
ment the IF-THEN rules in plain
Delphi code, since this would mean
that they’re just linked in with the
engine code. The crux of a Knowl-
edge Based System is that the
knowledge rules can be maintained
without having to recompile the
system (since the system only con-
sists of the inference engine which
doesn’t change, of course).There-
fore, we can often identify a third
component of Knowledge Based
Systems: the rule editor, to insert,
edit or update rules in the knowl-
edge base (also called the rule-
base). For now, we’ll focus our
attention on the knowledge base
and inference engine only.

Figure 1 shows an example of a
set of five IF-THEN rules that can be
used to identify the well-known
Delphi 1.x “Error: disk full or file not
an .EXE file” error message
problem. These five rules are in
fact using 7 “facts” (issues that are
reasoned about in the rules):

ERRORMESSAGE (the goal)

DISK-IS-FULL

USING-DELPHI-1

OPTIMISE-FOR-SIZE/LOAD-TIME-CHECKED

CORRUPT-OR-WRONG-RES-FILE

32-BITS-RES-FILE

USING-IMAGEEDITOR

The goal is what we need to “prove”
or “explain”. In this very simple ex-
ample, facts are limited to having
only three values: Unknown (initial
default value), Yes or No. When
using any of the rules above we can
only derive a value Yes for a fact.
However, if a fact cannot be
derived from a rule (like the fact
USING-DELPHI-1), then we have to
obtain its value some other way,
usually by asking the user (in a
nicely formatted question of
course). Also, asking fact values
should always be the last resort
and only used if the fact cannot be
derived using one of the rules.

Some facts can have a pre-defined
initial value other than Unknown
(for example if we have a “user pro-
file” which tells us the user is using
Delphi 1.x). So, in the correct
order, a fact can obtain a value in
three ways:
➣ Initially (default Unknown, but

sometimes overruled to Yes or
No),

➣ Derived from a rule (Yes),
➣ Obtained from the user by

asking for it (Yes/No).

Forward Chaining
Having these facts together with
the rules, we can use (at least) two
algorithms to apply the rules on
the facts. The simplest algorithm is
known as forward chaining. This
means that given a few facts with
known values, we attempt to apply
each rule until we have either
found a valid goal (in this case the
ERRORMESSAGE), or we’ve run out of
rules that can be executed. Note
that we need to do this in loops, as
the execution of one rule can allow
another rule to be executed (which
may have been disregarded a mo-
ment ago). In pseudo code, this
looks like Listing 1.

The function TestRule checks if
the conditions of the rule are valid.

IF DISK-IS-FULL THEN ERRORMESSAGE
IF USING-DELPHI-1 AND
 OPTIMISE-FOR-SIZE/LOAD-TIME-CHECKED THEN ERRORMESSAGE
IF CORRUPT-OR-WRONG-RES-FILE THEN ERRORMESSAGE
IF USING-DELPHI-1 AND
 32-BITS-RES-FILE THEN CORRUPT-OR-WRONG-RES-FILE
IF USING-IMAGEEDITOR THEN CORRUPT-OR-WRONG-RES-FILE

➤ Figure 1

repeat
 rule := first;
 repeat
 if TestRule(rule) then FireRule(rule);
 Next(rule);
 until goal found or no more rules;
until goal found

➤ Listing 1

December 1996 The Delphi Magazine 39

The procedure FireRule executes
the conclusion of the rule, which
means assigning a Yes value to one
(or more) of the facts.

Forward chaining is especially
useful if you have a lot of facts and
goals and do not know in advance
which of the goals can be derived.
In our little example, however, we
have only one goal that we need to
prove or explain, so we need to go
to another inference algorithm
called backward chaining.

Backward Chaining
Backward chaining starts with the
goal we want to prove and looks for
rules that have this goal in their
conclusion part. These rules are
then checked to see if they can be
executed. If not (which is usually
the case), we attempt to prove the
conditions of the rule after which
the rule can be fired, which then
leads to the required goal. This
means recursively attempting to

execute rules until enough have
been successfully executed to al-
low the goal to be proved. Listing 2
shows this in pseudo code.

Although this procedure is re-
cursive, we can predict in advance
what the maximum depth will be
(in our example there are two lay-
ers of rules, so the depth, including
the initial goal, is three).

Facts
In order to implement a knowledge
based system in Delphi, we need

some way to store the facts and
rules. It seems logical to use tables
for this purpose. For a fact, we need
to store a unique fact number (the
key), whether or not it’s a goal-fact
(Boolean), the name of the fact, and
(if appropriate) a question that can
be asked if the fact cannot be
derived using rules.

This leads to the table FACTS.DB
shown in Figure 2.

Note that we have only one goal-
fact and five facts that (if rules fail)
we can get a value for by asking a

procedure backward(goal)
begin
 rule := first;
 repeat
 if Conclusion(rule,goal) then
 begin
 if not TestRule(rule) then { derive }
 for each condition in rule call backward(condition) // recursive call
 if not TestRule(rule) then { ask }
 ask fact for condition(s) of rule
 end
 Next(rule)
 until goal proven or no more rules
end

➤ Listing 2

unit FACTS;
interface
uses DB, DBTables, SysUtils;
Type
 TName32 = String[32];
 TValue = (UnKnown, Yes, No);
var
 ValueStr: Array[TValue] of String[7] =
 (’UnKnown’,’Yes’,’No’);
type
 TFact = class(TObject)
 private
 FFact: Integer;
 FGoal: Boolean;
 FName: TName32;
 FValue: TValue;
 FQuestion: ShortString;
 public
 constructor Create(Table: TTable); virtual;
 published
 property Fact: Integer read FFact;
 property Goal: Boolean read FGoal;
 property Name: TName32 read FName;
 property Value: TValue read FValue write FValue;
 property Question: ShortString read FQuestion;
 end {TFact};
const
 MaxFact = 512; { limit to 512 facts for now }
var
 NumFact: Integer = 0;
 { optimisation: fact # in position # }
 _Fact: Array[1..MaxFact] of TFact;
implementation

constructor TFact.Create(Table: TTable);
begin
 inherited Create;
 with Table do begin
 FFact := FieldByName(’Fact’).AsInteger;
 FGoal := FieldByName(’Goal’).AsBoolean;
 FName := FieldByName(’Name’).AsString;
 FValue := UnKnown;
 FQuestion := FieldByName(’Question’).AsString
 end
end {Create};

const FactTableName = ’FACTS.DB’;

procedure CreateFACTS;
begin
 with TTable.Create(nil) do
 try
 Active := False;
 TableType := ttParadox;
 TableName := FactTableName;
 with FieldDefs do begin
 Clear;
 Add(’Fact’, ftInteger, 0, TRUE);
 Add(’Goal’, ftBoolean, 0, TRUE);
 Add(’Name’, ftString, 32, TRUE);
 Add(’Question’, ftString, 255, FALSE)
 end;
 with IndexDefs do begin
 Clear;
 Add(’index’, ’Fact’, [ixPrimary,ixUnique])
 end;
 CreateTable
 finally
 Free
 end
end {CreateFACTS};

var FactTable: TTable = nil;

initialization
 if not FileExists(FactTableName) then CreateFACTS;
 FactTable := TTable.Create(nil);
 FactTable.TableName := FactTableName;
 FactTable.Open;
 while not FactTable.Eof do begin
 Inc(NumFact);
 if FactTable.FieldByName(’Fact’).AsInteger <>
 NumFact then
 raise Exception.Create(
 ’Error: facts are not sorted...’);
 _Fact[NumFact] := TFact.Create(FactTable);
 FactTable.Next
 end;
finalization
 FactTable.Close;
 FactTable.Free
end.

➤ Listing 3

40 The Delphi Magazine Issue 16

question. Also note that the value
of the facts is not stored in the
table. Reasoning is a process that
is repeated several times for differ-
ent situations, so it would not be
useful to store the values for one
particular session in the table. In-
stead, the table is loaded in a set of
fact classes and values are stored
in memory with the fact classes.

The corresponding class TFact is
defined in Listing 3.

Note that if the table FACTS.DB
does not exist, this program will
automatically create it (this code
was generated using my Table
Source Expert available from my
Web site). If the table does exist,
this unit reads the facts from the
table and inserts them in an array
_Fact of TFact. This is the place
where the actual value (default Un-
known) of each fact is stored and
can be changed during the reason-
ing process. Note that for the time
being I’ve used a hardcoded limit of
512 facts. This is more than enough
for our current example. Next time,
we’ll see how to store a virtually
unlimited number of facts in a
much cleaner way.

Finally, note that the fact table
must not contain any ‘holes’, that

is, facts must be numbered from 1
to N where N is the number of facts
in the table. Since the table is
sorted on fact-number, this would
mean that record X is also fact
number X. This is very important
and speeds up the process of refer-
encing facts by rules. If this condi-
tion is not true, then an exception
Error: facts are not sorted... will be
raised.

Rules
A table similar to FACTS.DB can be
written for the rules. Rules consist
of two parts: conditions and con-
clusions. Both can be multi-valued.
A condition consists of a rule
number, a fact (key-number) and
the value that the fact must have to
satisfy the condition. A conclusion
also consists of a rule number, a
fact (key-number) and the value
that is assigned to this fact once
the conditions are satisfied and the
rule is fired. A conclusion can also
contain a certainty factor (CF), usu-
ally a floating point value between
0 and 1 that indicates the certainty
of the conclusion. We can even
combine certainty factors with
complex mathematical rules, but
for now we only use a CF of 1.

If we read the previous para-
graph closely, we see that the con-
ditions and conclusions are in fact
very much alike. The only thing
that conclusions have is a CF of 1.
So, let’s use this fact to create a
single record type where condi-
tions are defined to have a CF of 0
(this would be a useless conclusion
anyway). This leads to the table
RULES.DB shown in Figure 3.

Note that I’ve introduced some
comments for each rule, to explain
what the rule actually is about.
This can be used later for explain-
ing the reasoning process (some-
thing we’ll explore in more detail
next month). The corresponding
class TRule is shown in Listing 4.

Note that just like the facts, the
RULES.DB table is created when it
doesn’t already exist. When it does
exist, the rules are read into the
_Rule array (fixed length of 1024
rules for now). Apart from the
TRule class, we need three more
routines to enable us to reason
with the rules:

function TestRule(
 RuleNr: Integer): Boolean;
procedure FireRule(
 RuleNr: Integer);
function Conclude(RuleNr,
 FactNr: Integer): Boolean;

Function TestRule returns True if
the conditions of the rule RuleNr
are satisfied. In that case, we can
safely call FireRule, which exe-
cutes the conclusions of rule
RuleNr, which means that certain
facts get a new value. The last rou-
tine, Conclude, is needed to find out
if the given rule RuleNr does in fact
contain a conclusion part that
(amongst other possibilities) de-
rives something for fact FactNr.
This last function is needed for
backward chaining, to find out
which rules to use to prove a fact.

Forward Chaining
Now that we have real TFact and
TRule classes, it’s time to start
implementing the forward and
backward chaining inference
mechanisms. Forward chaining is
fairly straightforward, as you can
see in the pseudo-code. The real
Delphi code is shown in Listing 5.

➤ Figure 2

➤ Figure 3

December 1996 The Delphi Magazine 41

Of course, if none of the facts
have any initial value this loop will
run once and then terminate with-
out having found a goal. In a situ-
ation with only one goal, forward
chaining is not the best algorithm
to use (as we discussed earlier).

Backward Chaining
While forward chaining has an up-
per limit of N execution times of the
loop (for N rules, since in each loop
a minimum of one rule must be
executed to avoid termination),
backward chaining is a recursive
process of a maximum depth of N
(if each rule is needed to prove the
next one). In theory, backward
chaining can even lead to endless
loops (until we run out of stack
space) in cases like this:
IF A THEN B
IF B THEN A

where we need to derive A. One way
to avoid that would be to mark
each rule for which we’re busy
right now (a kind of transitive clo-
sure). For our small example, this
technique was not needed, but
we’ll get back to this next month

when we’ll enhance TRule and
create a real TRuleBase component.

The pseudo-code for backward
chaining can be translated into the
real Delphi code shown in Listing 6.

Note that if a question has been
answered with No, we use a fast exit

unit RULES;
interface
uses DB, DBTables, SysUtils, FACTS;
type
 TRule = class(TObject)
 private
 FRule: Integer;
 FCF: SmallInt;
 FFact: Integer;
 FValue: TValue;
 FComments: ShortString;
 protected
 FFired: Boolean;
 public
 constructor Create(Table: TTable); virtual;
 published
 property Rule: Integer read FRule;
 property CF: SmallInt read FCF;
 property Fact: Integer read FFact;
 property Value: TValue read FValue;
 property Fired: Boolean read FFired write FFired;
 property Comments: ShortString read FComments;
 end {TRule};
const MaxRule = 1024;
var
 NumRule: Integer = 0;
 RuleMax: Integer = 0;
 _Rule: Array[1..MaxRule] of TRule;
function TestRule(RuleNr: Integer): Boolean;
procedure FireRule(RuleNr: Integer);
function Conclude(RuleNr, FactNr: Integer): Boolean;
implementation
constructor TRule.Create(Table: TTable);
begin
 inherited Create;
 with Table do begin
 FRule := FieldByName(’Rule’).AsInteger;
 FCF := FieldByName(’CF’).AsInteger;
 FFact := FieldByName(’Fact’).AsInteger;
 FValue := TValue(FieldByName(’Value’).AsInteger); // 0,1,2
 FComments := FieldByName(’Comments’).AsString
 end
end {Create};
function TestRule(RuleNr: Integer): Boolean;
var i: Integer;
begin
 Result := True;
 for i:=1 to NumRule do
 if (_Rule[i].Rule = RuleNr) and (_Rule[i].CF = 0) then
 Result := Result AND
 (_Fact[_Rule[i].Fact].Value = Rule[i].Value)
end {TestRule};
procedure FireRule(RuleNr: Integer);
var i: Integer;
begin
 for i:=1 to NumRule do
 if (_Rule[i].Rule = RuleNr) and

 (_Rule[i].CF > 0) and not _Rule[i].Fired then begin
 { fire }
 _Fact[_Rule[i].Fact].Value := _Rule[i].Value;
 _Rule[i].FFired := True
 end
end {FireRule};
function Conclude(RuleNr, FactNr: Integer): Boolean;
var i: Integer;
begin
 Result := False;
 for i:=1 to NumRule do
 if (_Rule[i].Rule = RuleNr) and
 (_Rule[i].Fact = FactNr) and
 (_Rule[i].CF > 0) then Result := True { rule can be used }
end {Conclude};
const RuleTableName = ’RULES.DB’;
procedure CreateRULES;
begin
 with TTable.Create(nil) do
 try
 Active := False;
 TableType := ttParadox;
 TableName := RuleTableName;
 with FieldDefs do begin
 Clear;
 Add(’Rule’, ftInteger, 0, TRUE);
 Add(’CF’, ftSmallInt, 0, TRUE);
 Add(’Fact’, ftInteger, 0, TRUE);
 Add(’Value’, ftInteger, 0, FALSE);
 Add(’Comments’, ftString, 255, FALSE)
 end;
 with IndexDefs do begin
 Clear;
 Add(’index’, ’Rule;CF;Fact’, [ixPrimary,ixUnique])
 end;
 CreateTable
 finally
 Free
 end
end {CreateRULES};
var RuleTable: TTable = nil;
initialization
 if not FileExists(RuleTableName) then CreateRULES;
 RuleTable := TTable.Create(nil);
 RuleTable.TableName := RuleTableName;
 RuleTable.Open;
 while not RuleTable.Eof do begin
 Inc(NumRule);
 _Rule[NumRule] := TRule.Create(RuleTable);
 if _Rule[NumRule].Rule > RuleMax then
 RuleMax := _Rule[NumRule].Rule;
 RuleTable.Next
 end;
finalization
 RuleTable.Close;
 RuleTable.Free
end.

➤ Listing 4

function Forwards: Integer;
var RulesFired,i: Integer;
begin
 Result := 0;
 RulesFired := NumRule;
 while (Result = 0) and (RulesFired > 0) do begin
 RulesFired := 0;
 for i:=1 to RuleMax do begin
 { all rules }
 if TestRule(i) then begin
 FireRule(i);
 Inc(RulesFired)
 end
 end;
 Result := NumFact;
 while (Result > 0) and ((not _Fact[Result].Goal) or
 ((_Fact[Result].Goal) and (_Fact[Result].Value = UnKnown))) do
 Dec(Result)
 end
end {Forwards};

➤ Listing 5

42 The Delphi Magazine Issue 16

of the loop (by setting j to NumRule
and ignoring all other conditions of
the current rule which is under in-
vestigation). In our example, we
can only use conditions that are
True (value of Yes), so whenever we
get a No, we can disregard the rule
immediately. Of course, in the real
world we often need to check a fact
against a real value, or even a range
of values, and this short-cut cannot
be used in those situations.

Action!
Now, let’s see the backward
chainer in action. In order to prove
the goal-fact 1, it tries to find a rule
that has fact 1 as a conclusion.
There are three rules than can be
fired: 1, 2 and 3. Rule 1 can be fired
if the fact Disk Full can be proven.
However, there is no rule to prove
this fact, so we have to ask a ques-
tion (Is your disk really full?)
and await the answer.

We answer No, so the inference
engine discards rule 1 and moves
on to the next one that can be used
to prove fact 1. This turns out to be
rule 2, which can be fired if the fact
Optimise for size/load time can be
proved. Again, there is no rule to
prove this fact, so we ask Do you
have the ‘optimise for size/load
time’ option set in the IDE?

We answer No and move on to the
next rule. Rule 3 says that the goal-
fact 1 can be proven if we can prove
fact 4: namely that we’re using a
corrupt or wrong .RES file. There
are two rules that can be used to
prove fact 4, rules 4 and 5. The first
rule consists of two conditions: Us-
ing Delphi 1 and Using a 32-bits
RES file (with Delphi 1). Neither
fact can be proven using rules,
so we need to ask Are you using
Delphi 1.0x?.

Yes, we are using Delphi 1.0x, so
the program continues by trying to
prove the second condition: we
were using a 32-bits .RES file. Well,
no, we didn’t use a 32-bits .RES file.
This means that one condition is
proven but the other one is not.
Rule 4 must be disregarded and we
move on to rule 5. This rule can
prove fact 4 if we used the Image
Editor. This fact cannot be proven,
so we ask Did you use ImageEditor
to create this .RES file?.

procedure Backwards(Goal: Integer);
var
 i,j: Integer;
begin
 i := 1;
 while i <= RuleMax do begin
 { all rules }
 if Conclude(i,Goal) then begin
 if TestRule(i) then
 FireRule(i)
 else begin
 { infer or ask }
 j := 1;
 while j <= NumRule do begin
 if (_Rule[j].Rule = i) and (_Rule[j].CF = 0) and
 (_Fact[_Rule[j].Fact].Value = UnKnown) then begin
 Backwards(_Rule[j].Fact); { infer }
 if TestRule(i) then
 j := NumRule
 else begin
 { ask }
 if _Fact[_Rule[j].Fact].Question <> ’’ then begin
 if MessageDlg(_Fact[_Rule[j].Fact].Question,
 mtConfirmation,[mbYes,mbNo],0) = mrYes then
 _Fact[_Rule[j].Fact].Value := Yes
 else begin
 _Fact[_Rule[j].Fact].Value := No;
 j := NumRule { rule can never be fired }
 end
 end;
 if TestRule(i) then
 j := NumRule
 end
 end;
 Inc(j)
 end;
 if TestRule(i) then begin
 FireRule(i);
 i := RuleMax
 end
 end
 end;
 Inc(i)
 end
end {Backwards};

➤ Listing 6

Let’s assume I did use the Image
Editor to create a .RES file. The in-
ference engine can use this proven
fact to fire rule 5 which then proves
the fact of a corrupt or wrong .RES
file (this would a good place to use
a real certainly factor, by the way,
since the Image Editor is known to
corrupt .RES files in only a few rare
circumstances, however, enough
to check it out in this case). Having
proven that we have a corrupt .RES
file, we can then fire rule 3 and
prove (explain) our goal-fact 1.

Having found a closing path to
prove the goal-fact, we can now
print all rules that were fired and
all the facts that turned out to be
true (including the comments to
give extra information). This en-
hancement will be implemented
next month. For now, we at least
know what knowledge based solu-
tions are, how they work and how
we can implement a very simple
example using Delphi 2.

Next Time
I’ve already moved several
‘advanced’ issues to next month.

One of them is the issue that the
current TFact and TRule classes are
not real components but derived
from TObject. We’ll fix that next
time and include some component
editors to edit the facts and rules
while we’re at it. We’ll also be ex-
tending the facts to include ranges
of values, optimise the backward
chaining process and include an
explanation facility: the so-called
“why” function that explains to the
user why (or how) a conclusion has
been reached.

Bob Swart (aka Dr.Bob,
http://home.pi.net/~drbob/) is a
professional knowledge engineer
specialist using Delphi and C++ for
Bolesian, a free-lance technical
author for The Delphi Magazine
and co-author of The Revolution-
ary Guide to Delphi 2. In his spare
time, Bob likes to watch video
tapes of Star Trek Voyager and
Deep Space Nine with his 2.5 year
old son Erik Mark Pascal and new-
born daughter Natasha Louise
Delphine.

December 1996 The Delphi Magazine 43

	Forward Chaining
	Backward Chaining
	Facts
	Rules
	Forward Chaining
	Backward Chaining
	Action!
	Next Time

